Combinatorial iterated integrals and the harmonic volume of graphs
نویسندگان
چکیده
Let Γ be a connected bridgeless metric graph, and fix point v of Γ. We define combinatorial iterated integrals on along closed paths at v, unipotent generalization the usual cycle pairing analogue Chen's Riemann surfaces. These descend to bilinear between group algebra fundamental tensor first homology Γ, ∫:Zπ1(Γ,v)×TH1(Γ,R)→R. show that this two-step quotient allows one recover base-point up well-understood finite ambiguity. encode data structure as harmonic volume which is valued in tropical intermediate Jacobian. also give potential-theoretic characterization for hyperellipticity graphs.
منابع مشابه
Double Integrals and Iterated Integrals
Corresponding material in the book: Section 15.2, 15.3. Note: We are omitting the question types from the book that require three-dimensional visualization, i.e., those that require sketching figures in three dimensions to compute volumes. What students should definitely get: The procedure for computing double integrals over rectangles using iterated integrals, the procedure for computing doubl...
متن کاملChromatic Harmonic Indices and Chromatic Harmonic Polynomials of Certain Graphs
In the main this paper introduces the concept of chromatic harmonic polynomials denoted, $H^chi(G,x)$ and chromatic harmonic indices denoted, $H^chi(G)$ of a graph $G$. The new concept is then applied to finding explicit formula for the minimum (maximum) chromatic harmonic polynomials and the minimum (maximum) chromatic harmonic index of certain graphs. It is also applied to split graphs and ce...
متن کاملOn the harmonic index of bicyclic graphs
The harmonic index of a graph $G$, denoted by $H(G)$, is defined asthe sum of weights $2/[d(u)+d(v)]$ over all edges $uv$ of $G$, where$d(u)$ denotes the degree of a vertex $u$. Hu and Zhou [Y. Hu and X. Zhou, WSEAS Trans. Math. {bf 12} (2013) 716--726] proved that for any bicyclic graph $G$ of order $ngeq 4$, $H(G)le frac{n}{2}-frac{1}{15}$ and characterize all extremal bicyclic graphs.In this...
متن کاملD-Spectrum and D-Energy of Complements of Iterated Line Graphs of Regular Graphs
The D-eigenvalues {µ1,…,µp} of a graph G are the eigenvalues of its distance matrix D and form its D-spectrum. The D-energy, ED(G) of G is given by ED (G) =∑i=1p |µi|. Two non cospectral graphs with respect to D are said to be D-equi energetic if they have the same D-energy. In this paper we show that if G is an r-regular graph on p vertices with 2r ≤ p - 1, then the complements of iterated lin...
متن کاملIterated Path Integrals
The classical calculus of variation is a critical point theory of certain differentiable functions (or functional) on a smooth or piecewise smooth path space, whose differentiable structure is defined implicitly. Because of the importance of path spaces to analysis, geometry and other fields, it is desirable to develop a geometric integration theory or a de Rham theory for path spaces. Having i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Applied Mathematics
سال: 2021
ISSN: ['1090-2074', '0196-8858']
DOI: https://doi.org/10.1016/j.aam.2021.102190